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The problem of quasi-geostrophic two-layer flow past a vertical cylinder on a /?-plane 
is investigated analytically and numerically. Two parameter regimes are considered : 
(i) 0 < ,@/E < 00 and /? = O(1); (ii) I$/E % 1 and /?e/,l$ = O(1). E is the Rossby 
number, E is the Ekman number and /? is the beta parameter. In the first parameter 
regime the nonlinear interior and boundary-layer equations are integrated to deter- 
mine if and when the wall shear stress vanishes so that an estimate of the condition 
for separation in the classical sense can be obtained. The results seem to explain the 
enhancement/suppression of separation in retrograde/prograde flows and the e a s t  
west asymmetry observed in the experiments of Boyer & Davies (1982). In  the second 
parameter regime the analysis is linear and the vorticity balance is dominated by the 
/?-effect and Ekman suction. When the flow at infinity is vertically sheared, two large 
standing interior eddies can be generated next to the cylinder. Only the interior 
solutions are given in (ii) since the boundary-layer flow is irrelevant to the large-scale 
behaviour. 

1. Introduction 
The problem of flow separation is a classical one in fluid mechanics but in the 

context of rotating fluids it started to attract interest only recently with the 
pioneering experimental work of Boyer (1970). Slightly viscous homogeneous flow was 
forced past a circular cylinder extending throughout the depth of the fluid. The axis 
of the cylinder was parallel to the constant rotation vector. The results of the 
experiments showed that separation was inhibited in the limit of vanishing nonlinear 
effects but it occurred for small-but-finite Rossby numbers. The theoretical studies 
of Walker & Stewartson (1972) and Merkine & Solan (1979) showed that the 
parameter controlling separation is proportional to the ratio of the Rossby number 
E to the square root of the Ekman number E, and that separation is inhibited 
whenever the dissipation of vorticity induced by Ekman suction is dominant. The 
same conclusion was reached by Page (1982) when he considered flow separation in 
a rotating annulus with shallow topography. 

Large-scale geophysical flows are typified by the existence of the dynamically 
important Rossby waves. These waves are non-isotropic, owing their existence to the 
variation of the Coriolis parameter with latitude. An important consequence of the 
non-isotropy is that the east-west symmetry enjoyed by the constant-Coriolis- 
parameter dynamics is broken. (Constant-Coriolis-parameter dynamics is referred to 
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as the f-plane model. I n  the ,&-plane model the Coriolis parameter is allowed to vary 
linearly with latitude; all other effects of the Earth’s sphericity are ignored. /?-plane 
dynamics is often simulated in the laboratory by varying linearly in one horizontal 
direction the distance between the top and bottom bounding surfaces.) Thus i t  is 
expected that the dynamics of flow separation on a /?-plane will be different from that 
on an f-plane. 

White (1971) reported on an experimental study of a slightly viscous homogeneous 
prograde (eastward) flow past a circular cylinder on a ,&-plane and obtained 
qualitative agreement with theoretical results based on inviscid considerations. 
In  White’s study Ekman suction was of secondary importance, suggesting that 
the ,&-effect was responsible for inhibiting separation. Merkine (1980) studied 
the influence of a P-plane, measured by the non-dimensional parameter b, on the 
separation problem for White’s parameter regime, namely ,& = O( 1) and negligible 
Ekman suction. The results show that /3 inhibits separation in prograde flows but 
exerts no influence on the boundary-layer dynamics in retrograde (westward) flows 
in qualitative agreement with White’s experiment and also with the early experiments 
of the 1950s using spherical shells (see Merkine 1980 for discussion). Recently Boyer 
& Davies (1982) conducted a very careful and extensive experimental study of flow 
past a circular cylinder on a /?-plane using a rotating channel with sloping top and 
bottom surfaces. They considered the parameter regime ,& = O( 1) and e = O ( B )  and 
found that /? inhibits separation in prograde flows but enhances i t  in retrograde flows. 
The experimental study showed also that the downstream flows developed asym- 
metry with respect to  the mainstream direction. An explanation for this asymmetry, 
which appeared also in Boyer’s (1970) earlier experiments, was suggested by Merkine 
& Solan (1979). It is based on incorporating into the analysis higher-order Rossby- 
number effects. 

The dynamics of large-scale geophysical flows is stratified to the extent that 
baroclinicity is as important as rotation. Hence, i t  is of interest to study the 
separation problem of rotating stratified flows with possible application to flows 
around island-like objects. Hogg (1972) studied rotating stratified inviscid flow past 
a tall topographic feature. The inclusion of frictional effects goes one step further. 
A good review of the influence of orography on planetary flows is given by Hogg 
(1980). The physically realizable two-layer model provides us with the simplest way 
of incorporating stratification into the dynamics. This approach was taken recently 
by Brevdo & Merkine (1985) who considered the f-plane dynamics. The linear 
dynamics for a continuously stratified fluid was investigated by Merkine (1985). These 
two studies demonstrate that  on-coming flows that are of one sign but possess vertical 
shear can induce backflow regions next to  the cylinder without separation ever taking 
place. The physical explanation for this surprising phenomenon differs from the 
two-layer model to  the continuously stratified model. However, from a mathematical 
point of view this result emerges from the fact that  the linear dynamics of slightly 
viscous rotating systems is spatially uniformly valid. Thus, the existence of backflow 
regions predicted by linear theory cannot be eliminated when small nonlinear effects 
are introduced. I n  this paper we study the problem of flow separation in the context 
of the two-layer model on a ,&-plane. We hope that the results obtained will provide 
the necessary impetus for new laboratory experiments. 

The main conclusion of the experiments of Boyer & Davies (1982), namely that 
/? inhibits separation in prograde flows but enhances i t  in retrograde flows, is based 
on estimating the size of the eddies induced by separation. No boundary-layer 
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measurements were made, presumably because of the technical difficultiesencountered 
in performing such measurements in rotating systems. Our analysis studies the 
boundary-layer structure and terminates at the point where the classical boundary- 
layer approximation breaks down, and the original outer solution is consequently 
modified. When this occurs, classical boundary-layer theory suggests that the wall 
shear stress vanishes in a singular manner as shown by Goldstein (1948). The 
phenomenon of separation refers to the detachment of the boundary layer from the 
wall which is accompanied by a region of reversed flow downstream of the separation 
point (Rosenhead 1963). Experience shows that the collapse of the classical boundary- 
layer theory usually heralds the onset of separation and the point of vanishing shear 
stress is used to estimate the separation point. When the latter moves upstream from 
the rear stagnation point the size of the eddies increases. It is in this sense that we 
can relate our results to the measurements of Boyer & Davies (1982) and find the 
comparison harmonious. 

The collapse of classical boundary-layer theory does not necessarily signal the 
collapse of the boundary-layer approach. The triple-deck theory, an excellent review 
of which is given by Smith (1982), shows instances where it is possible to reformulate 
the boundary-layer problem in a way which allows determination of the boundary- 
layer structure as it detaches from the wall. This is not a simple matter, in particular 
for our coupled nonlinear boundary-layer equations, and no attempt is made here 
to apply the new strategy to the detached portion of the boundary layer. It is 
desirable that such a study should be carried out a t  a later timet. 

2. Themodel 
The model discussed in this section incorporates the p-effect into the model 

discussed by Brevdo & Merkine (1985). We consider a slightly viscous, quasi- 
geostrophic flow consisting of two layers of homogeneous, immiscible fluid confined 
vertically by rigid horizontal boundaries. The fluid density of the upper layer is 
slightly less than that of the lower layer so that the Boussinesq approximation is 
applicable. The system is on a P-plane, namely it rotates about the vertical z-axis 
with an angular velocity Q which is a linear function of the y-coordinate or 
equivalently the meridional direction of geophysical flows. Centrifugal effects are 
assumed negligible so that in the absence of motion the fluid interface is approximately 
level, the depths of the upper and lower layer are H ,  and H ,  respectively. A steady 
flow, not restricted horizontally, is forced past a vertical circular cylinder which 
extends throughout the depth of the fluid. A t  large distances from the cylinder the 
flow is unidirectional and along the x-axis. It is sheared vertically but not horizontally. 
Consistent with the quasi-geostrophic formalism, viscous effects are confined to thin 
boundary layers which are adjacent to the rigid horizontal surfaces and the interface 
and extend vertically along the cylinder. 

We use the indices n = 1, 2 to denote properties of the upper and lower layers 
respectively. Then v, is the kinematic viscosity, U,* is the magnitude of the 
dimensional velocity at  infinity and g(pz-pl ) /pz is the reduced gravity. The 
gravitational acceleration is denoted by g and p R  is the density, L is the radius of 
the cylinder a n d f =  2R is the Coriolis parameter whose value and gradient a t  the 
reference latitude y = 0 are given by fo and P1 respectively. Let U* = !j( U: + U,*) be 

t We are grateful to one of the referees for bringing up this point. 
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the characteristic velocity of the horizontal motion and L the characteristic length. 
It follows that the dynamics of the problem are controlled by the following 
6 non-dimensional parameters : 

TT* u -  
e = - the Rossby number, 

f o  L 

En = - vn the Ekman number, 
f o  fCn 

Hn 8, = - 
L the aspect ratio, 

the Froude number, F, = L2f i  
Hn s ( P ~ - P ~ ) / P ~  

x = (:y the viscosity ratio, 

p =  p1L2/U* the p parameter. 

The parameter constraints imposed on the quasi-geostrophic motion are 

6 4 1,  En 4 1,  8, = 0(1), F, = 0(1), /3 = O(1). 

Here the constraints on a,, F, and are understood in the limit of e+O, E,-tO. No 
constraint is imposed on x. 

Away from thin viscous boundary layers of O(&) existing along the horizontal 
surfaces and the interface and of O(B) along the vertical cylinder the quasi-geostrophic 
dynamics prevail and they are determined by the following two equations governing 
the geostrophic pressure P,.t 

(2.1) 

(2.2) 
J(P,,&,) is the Jacobian of P, and &,. Using a polar coordinate system for the 
horizontal motion with origin at the centre of the circular cross-section of the cylinder 
we have 

I J(P, , Q1) = (4 /2k)  [ - V2P, + (V2P2 - V2P,) + (El q / e )  V44, 

1 
J(P,, &,) = (&/2k) [ - V2P2 + x+1 (V2P, - V2&)] + (E,  a:/€) V4&. 

X + 1  1 

Qn is the potential vorticity defined as 

&, = V'P, + ( - F n ( q  - 4) + &. 

Since the geostrophic pressure is constant along streamlines of the geostrophic motion 
the radial and tangential components of this lowest-order motion are given by 

respectively. It follows that V2Pn is the relative vorticity of the geostrophic motion. 

t These equations are derived using e as the expansion parameter. The above constraints imply 
that the displacement of the interface and the @-effect contribute to the dynamics at O(6). 
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Equations (2.1) for the f-plane appear in Hart (1972). Their derivation is now 
standard and is given by Pedlosky (1979) for the case of an inviscid interface. 
Equations (2.1) state that following the geostrophic motion the geostrophic potential 
vorticity in each layer is changed as a result of vortex stretching and diffusion of 
vorticity. The vortex stretching is a consequence of the secondary circulation induced 
by the O(@) linear Ekman layers along the rigid horizontal surfaces and along the 
interface. Nonlinear effects in the Ekman layers can be ignored as long as E = o(@. 

The first term in the square brackets on the right-hand side of (2.1) represents the 
spin-down effect induced by the Ekman layers along the rigid horizontal surfaces. 
The second term in these square brackets represents the spin-up of one layer by the 
other one as a consequence of a possible vorticity difference that might exist between 
the two layers. The last term on the right-hand side of (2.1) represents the mechanism 
of vorticity diffusion. Finally, we observe that relative vorticity can also be induced 
by the gradient of the planetary vorticity through meridional motions and by the 
motion of the interface whose deviation from a state of relative rest is given 
non-dimensionally by Pa - PI. 

The Ekman layers whose effect on the quasi-geostrophic dynamics has been 
discussed above provide the transition region which adjusts the height-independent 
geostrophic motion of each layer to the no-slip condition at  the horizontal surfaces 
and provide continuity of velocity and stress along the interface separating the two 
layers. The situation along the vertical wall of the cylinder is more complex and i t  
is worthwhile recapitulating the results derived for homogeneous fluids. When 
E 4 B 4 1 and /3 = 0(1) the advection terms in the vorticity balance can be ignored 
and the vertical boundary layer splits into two layers of thickness O(@)  and O(&). 
Of these two the B layer is thicker but both layers are wider than the O(B) Ekman 
layers (Greenspan 1968). The linear theory for a flow past a circular cylinder on an 
f-plane was discussed first by Barcilon (1970) and improved by Walker & Stewartson 
(1972). The essence of the analysis is that the E! layer adjusts the 0 ( 1 )  interior 
geostrophic flow to the no-slip wall condition while the ,?&layer adjusts the lowest-order 
vertical velocity, which is O ( @ )  in the vertical boundary layer, to the no-slip wall 
condition. It also follows that the A?@ layer is in geostrophic balance and hence merges 
smoothly with the interior geostrophic flow. The structure of the inner ,?& layer is 
height dependent and thus cannot satisfy the Taylor-Proudman theorem. Formally, 
nonlinear effects become important when E = O ( B ) ,  a case treated also by Walker 
& Stewartson (1972) for the f-plane geometry. The vertical boundary layer still 
consists of two layers of widths Id and a. The outer I$ layer becomes nonlinear but 
retains its geostrophy. The I$ layer is still linear and so are the Ekman layers. As 
long as p = 0(1), the @-effect does not appear explicitly in the lowest-order 
boundary-layer equations. 

Thus, when E = O ( B )  and s+O the quasi-geostrophic barotropic vorticity equation 
with horizontal diffusion and a linear Ekman suction condition provides a uniformly 
valid representation of the dynamics of the geostrophic motion all the way to the 
vertical wall and the no-slip conditions along the cylinder can be expressed to lowest 
order in terms of the geostrophic velocity. The experimental results of Boyer (1970) 
show that as E increases the flow field develops lefkright asymmetry facing the 
downstream direction. Quasi-geostrophic formalism is not capable of explaining this 
effect and a different approach is necessary as demonstrated by Merkine & Solan 
(1979) for thef-plane case. 

Returning to the baroclinic problem a t  hand we are led to the possible conclusion 
that since each layer is of constant density, the vertical boundary layer along the 
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cylinder should split into a quasi-geostrophic h* layer and a non-geostrophic @ layer 
and that equations (2.1) represent uniformly the quasi-geostrophic dynamics all the 
way up to  the vertical wall where the no-slip conditions are imposed on the 
geostrophic motion. This point is also made by Hart  (1972) and i t  is proved by Brevdo 
(1983) using detailed arguments and expansions similar to those of Walker & 
Stewartson (1972). Thus (2.1), which are uniformly valid for E = O(J@), can now be 
supplemented by the boundary conditions along the cylinder 

and a t  infinity 

From the normalization i t  follows that 

u,+ u, = f 2 ,  (2.7) 

since we shall consider on-coming flows which are either prograde or retrograde. 
The results of the next Section demonstrate that  quasi-geostrophic dynamics is 

capable of explaining the influence of @ on the separation problem in prograde and 
retrograde flows in agreement with the observations of Boyer & Davis (1982). The 
left-right asymmetry with respect to  the mainstream direction observed in those 
experiments cannot be explained, however, by the quasi-geostrophic dynamics. To 
explain it the non-quasi-geostrophic analysis of Merkine & Solan (1979) must be used. 

3. Results and discussion 
= O ( E )  

as s+O. This implies that  diffusion of vorticity is of no consequence away from the 
vertical boundary layers along the cylinder. It follows that the solution of (2.1) can 
be determined by matching the solution of the diffusion-free interior to the diffusion- 
dominated solution that exists in the vertical boundary layer adjacent to  the cylinder. 

In  this section we determine the solution for the following parameter regimes: 
@ = 0(1) for 0 ,< = O( 1) for &n/e 3- 1 .  Formally, the derivation 
ofthe equations for li$n %- E should be based on using &n rather than B as the expansion 
parameter. Nevertheless (2.1) are uniformly valid for 0 < &,/e < 00 and by rescaling 
the @ parameter such that @&/I& = O( 1 )  we can consider the case where the @-effect 
operates on the same dynamical level as the Ekman suction while nonlinear effects 
can be ignored. 

The formal derivation of (2.1) is based on the asymptotic constraint that 

< 00 

3.1. @ = 0 ( 1 )  and 0 < &!/e < 00 

We consider first the case of li$n/c < 1 and assume that the vortex-stretching 
mechanism induced by the Ekman layers can be ignored. It then follows from (2.1) 
that  potential vorticity is conserved in the interior implying that 

v"n+(-l )nFn(~-Pz)+@~ = &,(Pn) (n = 1,2).  (3.1) 

I n  the absence of closed streamlines Qn(Pn) can be determined from the conditions 
a t  infinity, namely (2.6) and we obtain 
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It is convenient to introduce the perturbation stream function 

1c.n = P n + u n Y  (3.3) 

V21c.n+~-1)"Fn~1c.-,-1c.2-(~l-~2)1c.nl~nI+B1c.nl~n = 0 (3.4) 

whose governing equations are 

and we observe? that a change in the sign of U ,  is equivalent to a change in the sign 
of 8. We adhere, however, to the standard definition of /? assuming i t  non-negative. 
It follows from matching the interior solution with the boundary-layer solution that 
the no-penetration boundary condition can be imposed directly on the lowest-order 
interior motion implying that 

$n = U ,  sin 8, on r = 1. (3.5) 
The domain of integration is multiply connected and for p # 0 the solution is 

determined up to an arbitrary r-dependent circulation. We eliminate this circulation 
by applying the argument of Walker & Stewartson (1972). Although in the present 
case the Ekman suction mechanism is assumed negligible, Ekman layers do exist. An 
interior circulation would induce unidirectional radial mass flux in the Ekman layers 
which could only be maintained by a distribution of sources or sinks along the 
cylinder. This is not the case at hand. 

The boundary-value problem governing @,, is completely specified when the 
boundary conditions at infinity are stated. The condition that the $ns decay at 
infinity may not be enough to ensure uniqueness if stationary waves exist. When this 
happens we must impose the radiation condition. We restrict ourselves to flows which 
are either prograde or retrograde at infinity. From the dispersion relation it follows 
(i) that stationary Rossby waves with positive x-component group velocity exist in 
prograde flows, (ii) that no stationary Rossby waves exist in retrograde flows. 
Consequently the following conditions at  infinity are imposed : 

&hn+0 upstream for prograde flows, (3.6) 

II., + O  as r+ 00 for retrograde flows. (3.7) 

V2(a1c.1+b1c.2) = (N,a-F2b)1c. / ,+(Nzb--4a)  $29 (3.8) 

The two equations of (3.4) can be linearly combined to yield 

where a and b are arbitrary constants and 

Choosing a and b as the non-trivial solutions of the homogeneous problem 

we find that (3.8) reduces to Helmholtz's equation 

V2q!ln = -An$bn (n = 1,2),  

where the h,s are the eigenvalues of (3.10), namely 

(3.9) 

(3.10) 

(3.11) 
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From (3.5) and (3.13) it follows that 
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4, =cn5in6  on r = 1 ,  (3.14) 

where c1 = F, Ul+(Nl+Al) u,, c, = (N,+h,) U1+E; u,, (3.15) 

while (3.6)-(3.7) translate into 

&#,-to upstream for A, > 0 ,  (3.16) 

-#,+O as r+oO for A, < 0. (3.17) 

The procedure leading to the boundary-value problem for the # n ~  is equivalent to 
separating the motion into its barotropic and baroclinic components. 

The boundary-value problem for #n is mathematically identical to the barotropic 
problem treated by Merkine (1980) for prograde and retrograde flows. For prograde 
flows (A, > 0) the solution is a direct adaptation of the solution of Miles (1968) who 
studied lee waves generated by stratified flow past a semi-circular obstacle. (Miles’ 
technique was applied also by McCartney (1975) to the problem of inviscid flow over 
a short bump in a two-layer model on a p-plane.) The solution is 

m 

m 

f, = a, (%(Ak r )  sin qB+ Z b,, J,(Air) sin PO), 
P-1 

- - -- (qodd, p even), 
nZp2- 2 q 

= 0 (q -p  even), (3.18) 

The coefficients g, are determined by solving an infinite set of linear equations. 
Approximate solutions are obtained by truncation. For the range of parameters 
considered here truncation to six equations was adequate. The results differed from 
the seven-equation system in the fifth significant digit. 

For retrograde flows ( A ,  < 0) the solution is simple. It is given by 

#n = JAnJir) sin e/K,( ]A,$). (3.19) 

Once the #,s are determined the perturbation streamfunctions, lc.l and $,, follow 
from (3.13) and the geostrophic pressures, Pl and 4, from (3.3). 

When the interior solution generates closed circulations, and this can occur in 
prograde flows, the assumption leading to (3.1), namely that &,/s < 1 can be 
approximated by &,/s = 0, breaks down since the potential vorticity is left 
undetermined in the closed circulation regions. In  this case the interior flow must be 
determined numerically. However, when &,/s is not small the numerical approach 
is necessary for both prograde and retrograde flows. The method for integrating the 
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interior equations is described in the Appendix. Once the interior solution is 
determined (analytically or numerically) the azimuthal velocity impressed by it on 
the cylinder is known and the boundary-layer equations can be solved. The method 
of solution of these coupled nonlinear equations is described in detail in Brevdo & 
Merkine (1985) for a potential flow interior. With minor modifications it can be 
applied to any interior flow. 

The solution of the nonlinear boundary-layer equations derived from (2.1) termi- 
nates, as stated in $ 1 ,  in the vicinity of 8, where the vanishing wall shear stress 
signals the breakaway of the nonlinear quasi-geostrophic vertical boundary layer. 
This should signal, however, the separation of the entire O( 1) flow since the wall shear 
stress induced by the inner I8 layer is O ( B )  relative to the wall shear stress induced 
by the B layer and hence negligible in an asymptotic sense. (The tangential velocity 
in the 

Since the flow field depends on six parameters, exhausting all possibilities is 
impractical. Hence we restrict our presentation to 6, = 6, = 6, El = E, = E ,  x = 1 
and Fl = F, = 1 and for this choice of parameters the boundary-layer equations 
derived from (2.1) assume the form 

layer is O(Ef ) ,  Walker & Stewartson 1972.) 

aii, av, - 
a t  ae -+- - 0, 

fin = 21, = 0 on = 0, 

fin= V, asf[+oo. 

Here fin and Pn are the radial and tangential velocity components in the boundary 
layer. V, is the interior tangential velocity impressed on the boundary layer and 
f [  = ( r -  l)/Ef is the boundary-layer coordinate. We note also that 6 = 0(1) and 

From all cases considered retrograde flows are the simplest since the interior 
solution possesses no wavy structure and it decays exponentially a t  large distances 
form the cylinder. Merkine's (1980) barotropic study showed that the interior 
azimuthal velocity impressed on the cylinder increases with /3 but since Ekman 
suction was negligible the increase in velocity could not affect the boundary -layer 
dynamics which were identical to the non-rotating case. Yet Boyer & Davies (1982) 
observed in their experiments that separation was enhanced in retrograde flows. 
Merkine's (1980) analysis was for large Reynolds numbers but the onset of separation 
took place at moderate Reynolds numbers. Since the interior azimuthal velocity a t  
the cylinder increases with /3 this is equivalent to decreasing the effective Reynolds 
number (based on the velocity at infinity) necessary for triggering separation. A more 
likely explanation of the observations of Boyer & Davies is based on the fact that 
Ekman suction was not negligible in their experiments. This point is demonstrated 
in figure 1 depicting the angle of separation as a function of s / @  for U ,  = U,  = - 1 
and several values of/3 denoted in the figure by P, for retrograde flow. When U, = U,  
the response of the system is purely barotropic since the baroclinic mode vanishes. 
Hence this case corresponds to the experimental set-up of Boyer & Davies. We see 
that /3 enhances separation. The effect is small for large values of s / a  in agreement 

a/€ = O(1). 
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FIGURE 1.  The angle of separation 8, measured from the forward stagnation point as a function 
of for the barotropic retrograde and prograde flows U ,  = U ,  = - 1 and U ,  = U ,  = 1 ,  
respectively. The values of p for retrograde and prograde flows are denoted by pr and Bp, 
respectively. 

with Merkine’s (1980) prediction. It is significant, however, for moderate values of 
s/&. (In this case the entire flow field must be determined numerically.) The effect 
of Ekman suction on the interior is to dissipate the relative vorticity generated by the 
,&effect when fluid particles are displaced laterally. This breaks down the east-west 
symmetry of the inertial solution (3.19) and induces an adverse pressure gradient in 
the boundary layers which penetrates into the forward half (relative to the forward 
stagnation point) of the cylinder. Although Ekman suction also dissipates the wall 
vorticity the symmetry cannot be restored and separation is enhanced as figure 1 
indicates. However, when E / &  4 1 the interior production of relative vorticity by 
the @-effect is insignificant since /3 = 0(1) and the east-west symmetry is restored 
in the interior which assumes the form of a potential flow. This is reflected in figure 1 
where all curves converge for e / &  4 1. 

The inertial ( & / E  4 1) interior prograde flows do not possess the east-west 
symmetry of the intertial retrograde flows because of the presence of stationary 
Rossby waves. The dependence of the angle of separation on the ratio I&/€ for 
U ,  = U ,  = 1 and several values of p, denoted in the figure by /3, for prograde flows, 
is depicted also in figure 1. We point out again that since U, = U ,  this case corresponds 
to the barotropic experiments of Boyer & Davies (1982). In agreement with the 
experiments and contrary to the retrograde case discussed above we observe that p 
inhibits separation. For large values of €/I$ the limiting values of the curves approach 
Merkine’s (1980) results asymptotically. When 4 1 and since /3 = O(1) the 
interior relative vorticity production induced by the /3-effect is rapidly destroyed, the 
dependence on /3 is lost and all curves converge to thef-plane case. Figure 1 indicates 
also that for p # 0 the dependence of the separation angle on e l&  is not monotonic 
for prograde flows. In  particular, for moderate values of el& separation occurs earlier 
than when Ekman suction is negligible. To understand this phenomenon we recall 
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FIGIJRE 2. Streamlines of the interior intertial ( & / E  = 0) prograde flow for U ,  = 1.3, U, = 0.7 
and /3 = 1.  (a) Upper layer; (6) lower layer. 

first (Merkine 1980) that the strong east-west asymmetry of the interior inertial 
prograde regime inhibits separation by pushing toward the rear stagnation point the 
adverse pressure gradient impressed on the cylinder. In the presence of Ekman 
suction interior relative vorticity is destroyed and the east-west asymmetry weakens. 
(An opposite effect takes place in retrograde flows.) Consequently the adverse 
pressure gradient is pushed backwards towards the forward stagnation point. For 
e l&  1 this effect is stronger than the separation-inhibiting effect played by the 
Ekman suction in the boundary-layer dynamics and separation is accelerated. 

Shifting our attention to baroclinic flows we depict in figure 2 a typical inviscid, 
prograde, interior flow. As a general rule the amplitude of the stationary Rossby wave 
field is more pronounced in the slower, lower layer and in both layers it increases with 
p. Closed circulations appear first in the lower layer, invalidating the assumptions 
leading to the inertial solution, namely that the potential vorticity distribution can 
be determined everywhere by tracing the particles’ paths to infinity. When this 
happens we have a problem of singular perturbation. The &/€ + 1 dynamics cannot 
be approximated to lowest order by the B/e = 0 dynamics and as in barotropic cases, 
the interior dynamical equations must be integrated numerically. The interior, 
baroclinic, inertial solution for retrograde flow derived from (3.19) is extremely simple 
and requires no graphical presentation. 
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FIGURE 3. The same as in figure 1 but for the baroclinic retrograde and prograde flows 
U, = - 1.6, U ,  = -0.4 and U ,  = 1.6, U ,  = 0.4, respectively. 

Figure 1 indicates that the angle of separation is a monotonic function of e/B for 
retrograde flows and non-monotonic for prograde flows. The trend is opposite when 
the flow at infinity is vertically sheared as figure 3 shows. For retrograde flows, 
U, = - 1.6, U, = -0.4 and /3 = B, the small lower-layer velocity increases the local 
effect of /3 in the relative vorticity production by allowing greater lateral displacement 
of fluid particles. This enhances the interior east-west asymmetry created by Ekman 
suction to the extent that for moderate values of el,@ separation occurs at angles 
which are closer to the forward stagnation point than in the inertially dominated case 
ell& % 1. Our results indicate that regardless of U, and U, the separation angle in 
retrograde flows seems to be the same in both layers. 

Fortheprogradeflows, U,  = 1.6, U,  = 0.4andp = /3pthesmallerlower-layervelocity 
enhances again the B-effect and hence the separation-inhibiting effect of the interior 
east-west asymmetry. Thus stronger Ekman suction is necessary to remove the 
east-west asymmetry in the interior. But this process which tends to accelerate 
separation is counteracted now more easily by the stronger Ekman suction in the 
boundary layer and separation is inhibited. 

Our results indicate that for vertically sheared prograde flows the decrease in the 
wall shear stress on the approach to separation is more rapid in the upper layer than 
in the lower layer. However, on account of the singular behaviour of the boundary-layer 
equations in the vicinity of the point of separation no definite conclusion could be 
drawn as to whether separation indeed occurred earlier in the upper layer. 

The results of Brevdo & Merkine (1985) for the two-layer f-plane separation 
problem show that for sufficiently strong vertical shear, a backflow inner region can 
exist in the boundary layer of the lower layer without separation taking place. This 
can also occur on a P-plane but in view of the extensive discussion given to this 
phenomenon in Brevdo & Merkine (1985) we will not pursue it here any further. 
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3.2. /?e/I@:, = O ( l ) ,  I@,/€ 9 1 
In  this parameter regime the contributions of the relative vorticity and the 
displacement of the interface to the potential vorticity are negligible and equations 
(2.1 ) reduce in the interior to 

(V"-V2P,), 

B2- - -V2P2+-(V2P,-V2P2), 

aP, - 
ax X+1 
a< - 1 

ax X + 1  

B1- - -V2Pl+- 

where B,  = ,%/I!$, = O(1).  These equations can be linearly combined to yield 

a 
ax - ( U P , +  be) = V2[(A11a+A21 b)P,  + (A12a+A2, b)  $1, 

where a and b are arbitrary constants and 

2x+ 1 X 
A"=-(X+l)Bl'  (X+l)Bl'  

= (X+1)B2' (x+ 1) B2' 
A,, = - 

1 

(3.20) 

(3.21) 

Defining the perturbation streamfunctions 

II.n = Pn + u n  Y, (3.22) 

and choosing a and b as the non-trivial solutions of the homogeneous problem 

(3.20) reduces to the two equations 

1 a4n 
v2qi =-- ( n =  1,2),  

A, ax 

(3.23) 

(3.24) 

governing the barotropic and baroclinic modes of the flow fields where the h,s are 
the eigenvalues of (3.23), namely, 

4 , 2  = ~(A11+A22)+~[(A1i-A22)2+4A12A211f, (3.25) 

and (3.26) 

From (3.21) and (3.25) i t  follows that 
imposed on the @,s are (3.5) and (3.7) which translate into 

< 0. Consequently the boundary conditions 

I q5n = Cnsin8 on r =  1, 

(3.27) 

The transformation 

(3.28) 
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eliminates the first derivative from (3.24) and we find that G ,  is governed by 
Helmholtz's equation 

subject to the boundary conditions 

G ,  = C ,  sin t3 exp (-li:e) ~ on r = I ,  

G ,  = o(exp (k)) as r+m. 

It is straightforward to  show that 
r a, 

G ,  = C ,  E b ,  K ,  (-) sin me, 

(3.29) 

(3.30) 

(3.31) 

The integral in the expression for bm was evaluated by differentiating with respect 
to 8 the identity 

a: 
exp (Z cos 8)  = l , ( z ) + 2  C l j ( z )  C O S ~ ~ .  (3.33) 

1-1 

(Abramowitz & Stegun 1970). 
The solution for q5n is obtained by substituting (3.32) into (3.28). With the q5ns 

determined, the Pns follow from (3.26) and (3.22). The east-west asymmetry 
discussed in the previous section exists also in the present case as can be inferred from 
(3.20). We observe also that since the eigenvalues (3.25) are independent of the 
velocity a t  infinity (on account of the strong damping no stationary Rossby waves 
can exist) the same streamline pattern is obtained for prograde and retrograde flows. 
The only difference is that  the flow direction is reversed. The asymmetry is introduced 
by the Ekman suction mechanism which organizes the attributes of the vorticity field 
in the eastern sector, I 0 I < in, in a different manner from those in the western sector, 

< 18 1 < K, independent of the flow direction a t  infinity. To see this it suffices to  
consider the barotropic case. We note that in the vicinity of the cylinder the interior 
radial velocity is weak and the streamlines are nearly circular. Thus, in the immediate 
vicinity of the cylinder the attributes of the vorticity field are the shear of the 
azimuthal velocity and the curvature effect of the streamlines, namely av/ar and v / r ,  
respectively. There two must combine to offset the creation of vorticity by the 
meridional displacement of the fluid particles on the P-plane. Let us consider, for 
example, retrograde flows and the range 0 < 8 < K. I n  the eastern sector particles 
are displaced northward and the vorticity must be negative. The curvature vorticity 
is positive, however. This implies that the shear vorticity must be negative and 
sufficiently strong to  counteract the combined effect of curvature and P. It follows 
that streamlines must converge and that a jet should form in the eastern sector. I n  
the western sector particles are displaced southward and the vorticity must be 
positive. The curvature vorticity is still positive and i t  cancels partially the 
contribution of the p-effect. It follows that the shear vorticity need not be strong and 
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this can lead to the divergence of streamlines. Thus, the streamline pattern possesses 
easkwest asymmetry and this effect increases with /3. We can apply the same 
reasoning to prograde flows but the end result is the same. A jet is formed in the 
eastern sector and streamlines diverge in the western sector. 

These features can be illustrated easily in the limit of a large /3-effect. We consider 
for simplicity the case of x = 1 and B, = B, = B. From (3.25) it follows that 
A, = - 1/B, A, = -2 /B  where A, and A, correspond to the barotropic and baroclinic 
modes, respectively. For 2 I A, I 4 1 we can use the asymptotic properties of modified 
Bessel K-functions for large arguments and expression (3.33) to derive the following 
approximate expression for the solution : 

(3.34) 1 
P, N - U,  r sin 8 +sin 8 {( U,  + U,) exp [ - B(r- 1 ) ( 1  + cos 8)/2] 

+ (U,- U,) exp [ - B(r- 1)  ( 1  +cos 8)/4]}/2rf, 

P, N - U,r  sin 8+sin B{(U,+ U,) exp [- B(r- 1 )  ( 1  +cos 8)/2] 

- ( U ,  - U,) exp [ - B(r - 1) (1  + cos 8)/4]}/2ri, 

where U ,  + U, = f 2. The plus sign is for prograde flows; the minus sign is for retro- 
grade fl0ws.t When U,  = U,  = f 1 the response is pure barotropic and (3.34) simpli- 
fies to 

(3.35) 8 = pZ 1: f sin 8{ - r + r-f exp [ - B(r - 1 )  (1  + cos 8)/2]}. 

The azimuthal velocity is given by 

TI, = w,=+sin8 exp[-B(r-l)(l+cos8)/2]}, (3.36) 

which reduces on the cylinder to the following expression 

 TI^ = V, N Tsin 8 {  1 ++ [ 1 +  B(1+ cos O ) ] } .  (3.37) 

For large B the jet is strongest at 

(3.38) 

From (3.35) it follows that the width of the jet in the eastern sector is inversely 
proportional to B, much the same as in Stommel’s (1948) Gulf stream model. We note, 
however, that for such an approximation to have any validity we must require that 
the width of the jet be much larger than the ,?$ layer or that / 3 ~  4 ,?$. In  the western 
sector the boundary layer widens appreciably since 1 +cos 8 decreases and in the 
parabolic sector (r- 1 )  (e-7c)24 4 / B  the decay is algebraic. These features can be 
observed in figure 5(c) of Boyer & Davies (1982). When the constraint B $- 2 is not 
satisfied the exact solution must be used. Figure 4 depicts such a case for /3 = 4 2 / 2  
and a weak east-west asymmetry is observed. 

When the flow is baroclinic (3.34) can be used when B 9 4. The decay rate of the 
baroclinic mode is half as strong as that of the barotropic mode and the latter can 

t Equation (3.34) is not an asymptotic representation of the exact solution for large B since the 
asymptotic representation of Bessel functions for large arguments is not uniformly valid for large 
orders. Nevertheless, comparison of (3.34) with the exact solution shows that it is qualitatively 
correct. 
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FIGURE 4. Streamlines of the interior linear solution governed by (3.20) for the barotropic retrograde 
flow U, = U, = - 1, B, = B, = 2-f and ,y = 1. The solution for barotropic prograde flow is obtained 
by reversing the direction of the arrows leaving everything else unchanged. 

r 9 9 

- 0.5 

0.4 

FIQURE 5. The same as in figure 4 but for the baroclinic flow U, = - 1.9, U, = -0.1 and B = @. 
To obtain the corresponding prograde solution reverse the directions of the arrows leaving 
everything else unchanged. (a) Upper layer; (b! lower layer. 
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be ignored at large distances from the cylinder. However, at such distances the 
response is exponentially small. Hence, in order to appreciate the role of baroclinicity 
we must require that U,  be small. To emphasize, we set U, = 0 and (3.34) yields the 
following expression for the lower-layer flow 

pZ =&sinB{exp [ -B(r- i ) ( i+cos8) /~] -exp[-B(r- i ) (1+cos8) /~]} /~ .  (3.39) 

We see that P, vanishes on r = 1 and as r+ co, and consequently it is not monotonic. 
It follows that the azimuthal velocity changes its direction. In the baroclinically 
dominated domain, i.e. when the magnitude of P, decreases with r the azimuthal 
velocity is in the opposite direction to the upper-layer main-flow direction. 

This phenomenon can be understood if we note first that the interface can be 
considered as a source of vorticity which is equal to the average vorticity, i.e. to the 
vorticity of the barotropic mode. Hence, the action of the interface on a given layer is 
to spin it up proportionally to the vorticity difference existing between the interface and 
the layer. When the motion is barotropic or potential the action of the interface 
disappears. However, when the motion is baroclinic and not potential the interface 
acts in a way which reinforces the motion in the mainstream direction of the upper 
layer and counteracts i t  in the lower layer. It is the combination of relative vorticity 
production and baroclinicity which can generate regions of backflow. In  the interior, 
relative vorticity is generated by the 8-effect. In  the vertical boundary layers it is 
generated by the action of the walls. Although the azimuthal velocity derived from 
(3.39) is intense, being O(B) for 1 +cos 8 > 0, it is confined to a region of O(B-') next 
to the wall. When B decreases, the azimuthal velocity also decreases with a larger 
portion of the flow field disturbed. For moderate values of B the exact solution must 
be used and an example is shown in figure 5 for U, = 1.9, U,  = 0.1 and B = 28. All 
the features discussed above can be seen. The most striking feature is the large 
horizontal extent of the closed eddy, which although weak does not spin-down to a 
state of rest because of the action of the interface discussed above. 

The lowest-order solution described in this section is completed by adjusting the 
interior azimuthal velocity impressed on the cylinder to the no-slip wall condition 
through a linear I& vertical Shwartson layer which depends parametrically on 8. 
For sufficiently strong vertical shear this layer can develop locally an inner backflow 
region as shown by Brevdo & Merkine (1985). 

This paper is partly based on the doctoral thesis of L. Brevdo submitted to the 
Technion's Graduate School under the supervision of Professor L. Merkine. 

Appendix 
The numerical method used for integrating the interior equations derived from 

(2.1)-(2.6) by neglecting the diffusion of vorticity in the interior and dropping the 
first condition of (2.5) is a straightforward adaptation to the two-layer model of the 
scheme used by Vaziri & Boyer (1971). It was convenient to use a polar grid and 
because of the symmetry of the equations and the boundary conditions with respect 
to the flow direction at infinity only half of the domain 0 < 8 < n: was used. The grid 
interval was uniform in r and 8 and equal to &n:. In  the radial direction the domain 
of integration extended to r N 12. The equations were solved for the perturbation 
streamfunctions $n, i.e. the deviation of the pressure from its distribution at infinity. 
A t  the upstream boundary of the domain the perturbation potential vorticity was 
set equal to zero. At  the downstream boundary of the domain i t  was extrapolated 
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linearly outwards. The initial guess for the flow field was a potential flow configuration. 
The streamfunctions were determined from the updated potential vorticity by 
solving two coupled non-homogeneous Helmholtz’s problems. Convergence was 
achieved in about 10 iterations. The accuracy of the solution was checked by com- 
paring the azimuthal velocity impressed on the cylinder for U, = 1.3, U,  = 0.7, 
/3 = 1, F, = F, = 1 and &)/c = 0.01 with Miles inertial solution. The comparison 
was satisfactory. 
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